Chem. Ber. 116, 2219-2237 (1983)

Thermolabile Kohlenwasserstoffe, XIX¹⁾

Synthesen, Spektren, Struktur und Spannung hochverzweigter Pentane

Siegried Hellmann, Hans-Dieter Beckhaus und Christoph Rüchardt *

Chemisches Laboratorium der Universität Freiburg, Albertstr. 21, D-7800 Freiburg i.Br.

Eingegangen am 28. Oktober 1982

Die Synthesen und spektroskopischen Eigenschaften von acht Kohlenwasserstoffen $R^1R^2CH - C(CH_3)_3$ (3a - h) und zehn Kohlenwasserstoffen $R^1R^2R^3C - C(CH_3)_3$ (4a - k) (R = Alkyl) werden beschrieben und die Strukturen und Spannungsenthalpien anhand von Kraftfeldrechnungen diskutiert.

Thermolabile Hydrocarbons, XIX¹⁾

Syntheses, Spectra, Structures, and Strain of Highly Branched Pentanes

The syntheses and spectroscopic properties of eight hydrocarbons $R^1R^2CH - C(CH_3)_3$ (3a – h) and of ten hydrocarbons $R^1R^2R^3C - C(CH_3)_3$ (4a – k) (R = alkyl) are described. Their structures and strain enthalpies are discussed on the basis of force field calculations.

In früheren Arbeiten haben wir über die Zusammenhänge zwischen thermischer Stabilität, Spannungsenthalpie und Struktur hochverzweigter Alkankohlenwasserstoffe berichtet²⁾, die durch eine zentrale symmetrische tetra- $(1)^{3}$ bzw. hexa-substituierte $(2)^{4}$ C – C-Bindung ausgezeichnet waren.

$$\begin{array}{ccccc} R^2 R^2 & R^2 R^2 \\ R^1 - C - C - R^1 & R^1 - C - C - R^1 \\ I & H & R^3 R^3 \\ 1 & 2 \end{array}$$

Diese beiden Verbindungsklassen wurden als $C_t - C_t$ -Ethane bzw. $C_q - C_q$ -Ethane bezeichnet, weil das zentrale substituierte Ethanskelett aus zwei tertiären bzw. quartären C-Atomen besteht.

Wir wenden uns nun der Frage zu, ob die an den Systemen 1 und 2 erkannten Gesetzmäßigkeiten auch auf hochverzweigte Kohlenwasserstoffe übertragen werden können, die ausschließlich nichtsymmetrisch substituierte C – C-Bindungen enthalten. Als Modellverbindungen wählten wir die Verbindungsklassen 3 und 4, die man als di- und trisubstituierte (3) oder tetrasubstituierte (4) Methane bezeichnen kann. Die schwächsten Bindungen in diesen Molekülen dürften die zwischen den *tert*-Butylgruppen und dem zentralen C-Atom sein²).

Bis auf das bereits früher bearbeitete Hexamethylethan $4a (R^1 - R^3 = CH_3)$ handelt es sich bei sämtlichen Vertretern um substituierte Pentane, weil höchstens zwei der Reste R Methylgruppen sind. Nur wenige Vertreter der Verbindungen 3a,b und 4a - k sind beschrieben; zumeist in Publikationen vor dem Zeitalter der NMR-Spektroskopie und Gaschromatographie⁵⁾.

© Verlag Chemie GmbH, D-6940 Weinheim, 1983 0009 – 2940/83/0606 – 2219 \$ 02.50/0

	a	b	c		d	e	f	g	h
R ¹ R ²	<i>t</i> - С ₄ н н	H ₉ C ₂ I C ₂ I	H ₅ 2-0 H ₅ CH	C ₃ H ₇ [₃	2-C ₃ H ₇ C ₂ H ₅	<i>t</i> -C ₄ H ₉ CH ₃	$t - C_4 H_9$ $C_2 H_5$	$t-C_4H_9$ 2-C ₃ H ₇	$t - C_4 H_9$ $t - C_4 H_9$
(CE	[₃) ₃ C(CR'R'R	³ 4a	- k					
(CE	(3)3C() a	b	³ 4а с	d	e	f	g	h	i
(CE	a 2 CH ₃	b C ₂ H ₅	³ 4a c C ₂ H ₅	d C ₂ H ₅	e 2 - C ₃ H ₇	f 2 - C ₃ H ₇	g 2 - C ₃ F	h I ₇ <i>t</i> -C ₄ F	i I ₉ <i>t</i> -C ₄ H ₉
(CH) R^1 R^2	a CH ₃ CH ₃ CH ₃	b CR ¹ R ² R b C ₂ H ₅ CH ₃	³ 4a c C ₂ H ₅ C ₂ H ₅	$\frac{\mathbf{d}}{\mathbf{C}_{2}\mathbf{H}_{5}}$	е 2-С ₃ Н ₇ СН ₃	f 2-C ₃ H ₇ C ₂ H ₅	g 2 - C ₃ F 2 - C ₃ F	h H ₇ <i>t</i> -C ₄ H H ₇ CH ₃	$ \frac{\mathbf{i}}{\mathbf{H}_9} t - \mathbf{C}_4 \mathbf{H}_9 \\ \mathbf{C}_2 \mathbf{H}_5 $

Da Synthesen hochgespannter sperriger Kohlenstoffgerüste notorisch schwierig sind⁶⁾, wird die Darstellung der Verbindungen **3** und **4** im folgenden kurz beschrieben, obwohl die verwendeten Reaktionen nicht neuartig sind.

Synthesen

2,2,4,4-Tetramethylpentan⁷⁾ (**3a**) wurde aus 2-Chlor-2,4,4-trimethylpentan⁴⁾ durch Methylierung mit Trimethylaluminium⁸⁾ mit 82% Ausbeute in einer Reinheit \geq 99% (GC) erhalten.

3-Ethyl-2,2-dimethylpentan (3b) wurde ähnlich, wie früher in Lit.^{5a)} beschrieben, aus 3-Ethyl-2,2-dimethyl-3-pentanol durch Wasserabspaltung mit Thionylchlorid und Pyridin⁹⁾ (anstelle von Naphthalinsulfonsäure^{5a)}) zu 3-Ethyl-4,4-dimethyl-2-penten (Reinheit $\ge 93\%$) und anschließende Druckhydrierung dargestellt und durch Fraktionierung rein erhalten. Die direkte reduktive Dehydroxylierung des eingesetzten Alkohols nach *Maier*, von R. Schleyer et al.¹⁰⁾ am Ni-Al-Kontakt gab ein zu 79% reines Produkt, das nicht weiter gereinigt wurde.

Auf entsprechenden Wegen wurden 3c - f und 4e - g, k erhalten.

Die als Zwischenprodukte auftretenden Alkene sowie die Endprodukte wurden stets durch sorgfältige Fraktionierung in Drehband- oder Spaltrohrkolonnen und in mehreren Fällen sogar durch präparative GC gereinigt. In einigen Beispielen erfolgte die Ole-

Chem. Ber. 116 (1983)

(CH₃)₃C-CHR¹R²

3a-h

finsynthese auch durch Pyrolyse der *p*-Nitrobenzoate bzw. der Oxalate der eingesetzten Alkohole. Die Reinheit der Produkte wurde durch GC kontrolliert und die Strukturzuordnung spektroskopisch (insbesondere durch ¹³C-NMR) vorgenommen.

Chem. Ber. 116 (1983)

3-Isopropyl-2,2,4,4-tetramethylpentan (**3g**) wurde analog zu **3h**¹⁴ aus dem *p*-Nitrobenzoat von 3-Isopropyl-2,2,4,4-tetramethyl-3-pentanol durch Reduktion mit Lithium in Ethylamin¹⁴⁾ 95% rein dargestellt und durch präparative GC auf \geq 99% Reinheit gebracht.

Tri-*tert*-butylmethan (**3h**) wurde entsprechend dargestellt¹⁴⁾, aber auch durch Photolyse des Tri-*tert*-butylmethanol-oxalats in THF erhalten¹⁵⁾.

Im Gegensatz zur Synthese symmetrisch substituierter Ethane wie $4a^{4}$ läßt sich die Verknüpfung der zwei quartären C-Atome in den hexasubstituierten Ethanen 4 nur durch unsymmetrische Kupplung erreichen. Wir bedienten uns zur Darstellung der Verbindungen 4b, c, d, h und i der Reaktion von *tert*-Butyllithium mit dem entsprechenden tert. Alkylchlorid, wobei die Ausbeuten allerdings in der Größenordnung von 1% lagen. Nur 4b^{5a} war bisher beschrieben.

Durch präparative GC wurden die Verbindungen auf 90 bzw. 99% Reinheit (4h) gebracht.

Spektren

In den *IR-Spektren* der hochsubstituierten Verbindungen 3g und **h** sowie 4g und **k** sind einige Banden gegenüber den Normwerten^{16a)} zu höheren Wellenzahlen verschoben (Tab. 1).

Nr.	R ¹	R^2	R ³	CH- Valenz (2960)	HCH- Deformation (1470)	CCH- Deformation (1395)
32	t-C₄H₀	2-C ₁ H ₇	H ^{a)}	3022, 3000	1490	1400
3 ก็	$t - C_A H_0$	t-C₄H₀	H ^{b)}	3020, 3002	1498	1399
42	$2 - C_{3}H_{7}$	$2 - C_{1}H_{7}$	CH ₂ ^{b)}	3000	1493	1405
4 k	<i>t</i> -C ₄ H ₉	$2-C_3H_7$	CH ₃ ^{'b)}	3010	1480	1400

Tab. 1. Ausgewählte IR-Absorptionen $[cm^{-1}]$ von Methanen $tBu - CR^{1}R^{2}R^{3}$ (3 und 4). In Klammern sind die oberen Grenzen der Normwerte^{16a)} angegeben

a) Film. -b CCl₄.

In diesen Verbindungen sind die C-H-Bindungen nach Kraftfeldberechnungen (s.u.) verkürzt. Für **3h** ist die C-H-Bindungslänge am zentralen C-Atom nach Elektronenbeugung 111.1 pm¹⁷⁾, nach Kraftfeldberechnung 111.2 pm.

Die ¹*H-NMR-Spektren* der substituierten Ethane 3 und 4 konnten praktisch vollständig zugeordnet werden (Tab. 2).

Folgende Gesetzmäßigkeiten lassen sich erkennen:

Während für die CH₃- oder CH₂-Protonen von **3** und **4** jeweils nur geringfügige Unterschiede in δ gefunden werden, unterscheiden sich in **3** die chemischen Verschiebungen der CH-Protonen von Isopropyl-Gruppen von denen der CH-Protonen am zentralen C-Atom um ca. 1 ppm beträchtlich.

$$Me \qquad \begin{array}{c} R \\ C\underline{H} \longrightarrow C\underline{H} \longrightarrow t Bu \\ Me \qquad \uparrow \qquad \\ \delta: \quad 1.81-2.18 \quad 1.15-1.38 \end{array}$$

Im Vergleich zum Lit.-Wert^{16b)} sind erstere Tieffeld- und letztere Hochfeld-verschoben. Während Tieffeldverschiebungen als Folge von Van-der-Waals-Abstoßungen bekannt sind^{3,4,16)} – allerdings selten so extrem wie in unseren Beispielen¹⁸⁾ – sind uns Hochfeldverschiebungen in aliphatischen Verbindungen durch sterische Effekte in der hier beobachteten Größenordnung bisher nich bekannt geworden.

Mit ansteigender Größe der Alkylreste am zentralen C-Atom von 3 und 4 werden die Signale der meisten Protonen Tieffeld-verschoben. Lediglich für die Signale von Methylgruppen, die direkt an das zentrale C-Atom gebunden sind, tritt dieser Effekt nicht auf. Für die Methylsignale von Ethylgruppen und die Methinprotonen von Isopropylsubstituenten verursacht der Austausch des zentralen Wasserstoffs in 3 gegen CH_3 eine Hochfeldverschiebung.

Die Signale der ¹³C-NMR-Spektren konnten durch Breitband- und off-resonance-Entkopplung vollständig zugeordnet werden (Tab. 3).

Die Signallagen weichen stark, teilweise um mehr als 10 ppm, von den mit den Inkrementen von *Lindemann* und *Adams* berechneten Werten ab^{19b,20)}.

Auch in den ¹³C-NMR-Spektren werden die Signale der meisten Kerne in 3 und 4 mit zunehmender Substitution Tieffeld-verschoben. Als Beispiel vergleiche man die Signale der quartären C-Atome der *tert*-Butyl-Gruppen in 3c, 4e, f, g und k. Die Methylsignale der Ethyl-, Isopropyl- und *tert*-Butyl-Gruppen andererseits werden beim Austausch

						CH ₃ -	Protonen		CH ₂ -Prot	onen	CH-Prot	onen
ŗ.	R ¹	\mathbb{R}^2	R	R ⁴		ii	ו R =		in R=		in R	11
		:			/Bu	<i>i</i> Pr	Et	Me	Et	Н	<i>i</i> Pr	Н
3a	/Bu	/Bu	Н	Н	0.97					1.23		
3b	/Bu	ы	Ē	Н	0.85		0.92		(q			(q
3с	/Bu	<i>i</i> Pr	Me	Н	0.87	0.78		0.76			1.97	1.15
3d	/Bu	ίPr	Et	Н	0.89	0.86	0.96		c)		2.00	c)
3e	/Bu	/Bu	Me	Н	0.98			0.86				1.18
3f	/Bu	/Bu	ы	Н	0.98		0.97		1.31			Ð
3g	/Bu	/Bu	<i>i</i> Pr	Н	1.08	1.15					2.18	(þ
3h	/Bu	/Bu	/Bu	Н	1.23							1.38
4 b	/Bu	Ē	Me	Me	0.86		0.83	0.77	1.32			
4c	/Bu	Ē	Et	Me	0.86		0.83	0.73	1.41 1.32			
4d	/Bu	Ēt	Et	Ē	0.91		0.87		1.39			
4e	/Bu	iPr	Me	Me	0.90	0.89		0.76			1.81	
4f	<i>r</i> Bu	iPr	Et	Me	0.93	0.96	0.87	0.76	1.32		16.1	
4g	/Bu	<i>i</i> Pr	<i>i</i> Pr	Me	66.0	1.00		0.77	1		2.01	
4 h	/Bu	/Bu	Me	Me	0.99	70.1		0.83				
4i	/Bu	/Bu	ы	Еť	1.06		1.02		1.57			
4k	/Bu	/Bu	<i>i</i> Pr	Me	1.08	1.16		0.83			2.08	

	Tab.	3. Signall	agen (δ) i	n den ¹³ C-N	IMR-Spektrer	n substitui	erter Meth	iane R ¹ R ²]	$R^{3}R^{4}C_{2}$ 3	und 4 in C	DCI3/CCI	4 (2:1) ge	gen TMS	
	Ţ.	n2	5 C	40		¹³ CH ₃	in R =		¹³ CH,	in R =	¹³ CH i	n R =	¹³ C in	R =
ż	z	Y	Ч	K	/Bu	<i>i</i> Pr	ы	Me	Ēt	Cz	<i>i</i> Pr	Cz	/Bu	Cz
3а	/Bu	/Bu	Н	Н	31.9					56.5			32.3	
3b	/Bu	щ	Ē	Н	28.0		14.5		23.5			52.9	34.1	
3с	/Bu	<i>i</i> Pr	Me	Н	28.6	17.9		8.7			27.5	48.2	34.2	
3 d	<i>t</i> Bu	<i>i</i> Pr	Ē	Н	28.9	18.3	17.1		18.5		27.8	56.1	35.0	
						25.5								
3e	/Bu	/Bu	Me	Н	30.7			13.7				50.9	35.7	
3f	/Bu	/Bu	Ē	Н	31.2		18.8		22.8			60.7	37.1	
3g	/Bu	/Bu	iPr	Н	32.2	24.0					30.2	61.1	37.6	
3h	/Bu	/Bu	/Bu	Н	28.7							85.8	37.4	
4 b	/Bu	Et	Me	Me	25.7		9.1	20.6	28.6				36.0	37.2
4c	/Bu	Ē	Ēť	Me	26.7		10.4	19.3	27.4				36.9	
4d	/Bu	Ēt	Ē	Ēt	28.3		10.5		26.8				37.1	41.3
4e	/Bu	<i>i</i> Pr	Me	Me	27.3	37.1		20.5			32.5		37.1	39.4
4f	/Bu	íPr	щ	Me	28.5	20.7	10.6	18.5	27.9		32.2		38.0	41.7
						21.4								
4g	/Bu	<i>i</i> Pr	<i>i</i> Pr	Me	29.9	21.4		17.6			34.0		39.1	44.5
						21.5								
4 h	/Bu	/Bu	Me	Me	29.2			21.5					39.0	41.8
4i	/Bu	/Bu	Ē	Et	31.0		13.4		25.2				41.0	47.3
4 k	/Bu	/Bu	iPr	Me	31.1	23.4		21.8					41.7	47.7

Chem. Ber. 116 (1983)

von H gegen CH_3 am zentralen Methyl-Kohlenstoff Hochfeld-verschoben. Die Lage der Signale von Methyl- und Methylengruppen, die direkt am zentralen C-Atom gebunden sind, ändert sich nicht systematisch bei Substituentenvariation.

Rotationsbarrieren, die bei 25°C, der Meßtemperatur der NMR-Spektren, einen schnellen Konformationswechsel behindern, waren nicht festzustellen. Sämtliche Rotationsbarrieren sind demnach in $\Delta G^* \leq 15$ kcal \cdot mol^{-1 21}).

In den pentasubstituierten Ethanen **3c**, **d** und **g** zeigen die ${}^{3}J_{H}$ -Kopplungskonstanten zwischen den tert. Wasserstoffen des zentralen C-Atoms und der Isopropylgruppen mit 2.0, 1.8 bzw. 0.5 Hz Torsionswinkel von 86 – 90° an, wie es auch für die benachbarten Methinprotonen tetraalkylsubstituierter Ethane gefunden worden war^{2,3}. In Übereinstimmung mit den Kraftfeldberechnungen (s. unten Tab. 5) belegt dies auch für **3c**, **d** und **g** die *gauche-1*-Konformation, ohne jedoch die nach der Kraftfeldberechnung energetisch weniger günstige *gauche-2*-Konformation auszuschließen.

Als Folge dieser Vorzugskonformation findet man in den ¹H- und ¹³C-NMR-Spektren von **3c** und **d** nicht äquivalente Methylgruppen der Isopropylsubstituenten (s. Tab. 2 und 3). Die Isopropylsignale von **3g** zeigen dieses Phänomen dagegen nicht, weil die beiden *gauche*-Konformationen in diesem Fall entartet sind und offenbar unbehindert ineinander übergehen.

Auch in **4f** und **g** sind die CH₃-Gruppen der Isopropylsubstituenten spektroskopisch verschieden. Es kann allerdings aus den vorliegenden Spektren nicht entschieden werden, ob sie aufgrund von Diastereotopie-Effekten nicht äquivalent sind oder ob ebenfalls eine Vorzugskonformation vorliegt. In **4g**, das zwei Isopropylgruppen besitzt, konnte durch die Bestimmung der ¹³C-¹³C-Kopplungskonstanten²²⁾ nachgewiesen werden, daß beide Isopropylsubstituenten gleich sind, aber jeweils unterschiedliche CH₃-Gruppen tragen. Dies deutet auf eine unterschiedliche Population der möglichen Konformeren hin.

In **3f** läßt sich spektroskopisch sogar eine Vorzugskonformation der Ethylgruppe erkennen. Die Kopplung der CH₂-Protonen mit dem zentral gebundenen Methinproton H_z beträgt ${}^{3}J = 3.8$ Hz. In Übereinstimmung mit den Kraftfeldberechnungen (s. unten Tab. 5) spricht dies für ein sich schnell einstellendes Gleichgewicht zwischen den enantiomeren Konformationen, wobei zur Erklärung der Kopplungskonstanten der Torsionswinkel des zu H_z gauche-ständigen Protons größer als 60°, der des zu H_z antiständigen Protons kleiner als 180° sein muß. Die Kraftfeldberechnung sagt 103° (gauche) und 142° (anti) voraus.

Chem. Ber. 116 (1983)

Die Massenspektren aller Verbindungen 3 und 4 zeichnen sich durch folgende Gemeinsamkeit aus (Tab. 4): Der M⁺-Peak fehlt ganz oder besitzt nur geringe Intensität ($\leq 1\%$); Basispeak ist m/e = 57, das tert-Butylcarbenium-Ion; nur bei 4k treten weitere Peaks mit einer Intensität größer 40% auf; charakteristische Fragmente sind M⁺ - CH₃, M⁺ - C₄H₉ und M⁺ - C₅H₁₁. Daneben tritt M⁺ - R auf mit individueller Variation von R. Als wichtigste Fragmentierungswege stellt man demnach die Abspaltung der zentral gebundenen Gruppen, insbesondere von tert-Butyl fest neben der Methylabspaltung aus der tert-Butylgruppe.

					• • •		,		
Nr.	R ¹	R ²	R ³	M ⁺ [%]	M ⁺ - 15 [%]	$M^+ - R^{a}$ [%]	M ⁺ - <i>t</i> Bu [%]	$\frac{M^{+} - tBu, -1}{[\%_{0}]}$	$M^+ - C_5 H_{11}$ [%]
3 a	<i>t</i> Bu	н	н	<1	5	_	34	2	b)
3 b	Et	Et	н	_	<1	<1	11	9	b)
3c	iPr	Me	н	1	<1	9	14	17	b)
3 d	iPr	Et	Н	_	<1	4	9	13	11
3e	tBu	Me	н	1	1		25	4	12
3h	tBu	<i>t</i> Bu	н	_			1	1	1
4c	Et	Et	Me	•	<1	6	19	16	17
4d	Et	Et	Et	_		5	6	12	-
4e	iPr	Me	Me	<1	<1	8	23	11	_
4g	iPr	iPr	Me	_	-	5	3	1	-
4ň	tBu	Me	Me	<1	<1		47	-	13
4 k c)	tBu	<i>i</i> Pr	Me	~	_	3	11	2	5

Tab. 4. Typische Fragmente der Massenspektren substituierter Methane $R^1R^2R^3C - tBu$ ($tBu^+ m/e = 57$ stets 100%)

^{a)} Gemeint ist der Rest R $\neq t$ Bu mit der kleinsten Laufzahl. – ^{b)} m/e = 57. – ^{c)} Weitere intensive Signale: m/e = 85 (88%), 71 (93).

Kraftfeldberechnungen

Mit dem MM2-Kraftfeld von *Allinger*²³⁾, das sich bereits bei anderen hochverzweigten Alkanen bewährt hat²⁴⁾, wurde sorgfältig die Vorzugskonformation der Methane **3** und **4** ermittelt. Durch Rotation der Ethyl- bzw. Isopropylgruppen ergeben sich weitere Rotamere, die teilweise eine nur wenig höhere Enthalpie besitzen, als die jeweils stabilste Konformation (Tab. 5).

Wie erwartet, steigt die Spannungsenthalpie H_{sp} (Tab. 5, Fußnote b) in 3 und 4 mit zunehmender Größe der Reste R¹ bis R⁴ an und erreicht ihren Höchstwert in 4k mit 36.1 und 3h mit 37.1 kcal · mol⁻¹. Wie schon bei den tetra-³⁾ und hexa-substituierten⁴⁾ Ethanen aufgezeigt, gibt sich diese Spannung auch an der Struktur zu erkennen.

Tab. 6 zeigt beträchtlich von Normalwerten abweichende Strukturdaten, aufgeweitete C – C – C-Bindungswinkel, z.B. in **3a** $\Theta(tBu - C - tBu) = 124^{\circ}$, sowie gedehnte CC-Bindungen, z.B. in **4k** r(tBu - C) = 162.2 pm. Auf den ersten Blick ist jedoch kein einfacher Zusammenhang zwischen der Spannung und der Deformation zu erkennen: der am stärksten aufgeweitete Bindungswinkel findet sich sogar in dem am wenigsten gespannten Vertreter **3a**. Jedes Molekül weicht anscheinend ganz individuell der innermolekularen Van-der-Waals-Abstoßung durch Verformung der Struktur aus. Erfahrungsgemäß^{2,26)} erfolgt vorrangig Winkeldeformation und erst in zweiter Linie Bindungsdehnung. Bei den bereits erwähnten C_t – C_t-³ bzw. C_g – C_g-Ethanen⁴⁾ konnten

	Tab. 5. B	ildung	senth	alpie	n (∆H ⁰ _f (g)) und Spann	ingsenthalpi Kra	ien (H _{sp}) o fitfeldberec	der substi chnung (k	tuierten cal · mol	Methane 3 und 4 in unterschiedlichen Konformationen nach $\left[-1\right]$
	Ňr. ŀ	R ¹ F	{ ² Β	53	R ⁴	$\Delta H^{0}_{\mathrm{f}}(\mathrm{g})^{\mathrm{a})}$	(q ^{ds} H	Vorzug: R ²	skonforn R ³	lation ^{c)} R ⁴	energiereichere Rotamere $H_{\rm sp}/{\rm Konformation}$ (R ² , R ³ , R ⁴) ^{c)}
	3a f	Bu t	Bu F	F	н	59.40	6.63	1	I	I	
,	3b (Bu E	н	ц.	Н	55.13	7.84	D	D	ł	9.28/D, E(=F)
	3c t	Bu <i>i</i>	Pr N	Ae l	Н	57.15	7.77	¥	I	I	10.56/ B
,	3d (Bu i	Pr E	۲ ۲	Н	59.34	10.71	V	Q	I	11.38/A,E; 12.38/A,F; 12.72/C,F; 13.77/C,E; 16.33/C,D
	3e (Bu t	Bu N	Ae l	Н	59.26	13.85	I	I	I	1
	3f (Bu t	Bu E	it I	Н	60.96	17.28	1	D	I	19.22/F; 19.58/E
	32 1	Bu t	Bu <i>i</i> ł	Pr	Н	62.23	23.09	I	<	I	25.94/ B ; 29.95/C
	3h <i>t</i>	Bu t	Bu A	Bu l	Н	56.40	37.11	I	I	1	1
-	4b (Bu E	3t N	Ae 1	Me	56.06	9.97	D	I	I	10.52/E
-	4c t	Bu E	Э	1	Me	57.96	13.20	D	Q	I	13.43/D,E; 14.08/D,F; 14.23/E,F; 15.56/E,F; 15.40/E,E;
											16.77/E,F
-	4d /	'Bu E	E	it I	ដី	59.24	17.05	H	Q	Н	17.64/ F , D , D ; 17.88/ F , F ; 18.12/ E , D , F ; 18.57/ D , D , D ;
											19.95/F,D,E; 19.90/E,D,D; 24.66/F,E,F
	4e (Bu ä	Pr V	1e]	Me	58.74	14.37	¥	ł	l	15.28/C; 15.76/B
	4f t	Bu â	Pr E	ŝt	Me	59.15	18.73	B	Q	I	19.42/A,E; 20.07/C,E; 20.14/A,D; 20.89/B,E;
											21.63/C,F; 21.57/A,F; 21.98/B,F; 22.65/C,D
-	4g ('Bu á	Pr A	9r	Me	58.76	26.56	ပ	B	ι	26.76/ A,B ; 26.84/ A,A ; 27.15/ C,A ; 28.28/ B,B ;
											29.08/ B,B ; 29.72/ C ,C
	4h f	Bu C	Bu N	1e }	Me	59.72	21.58	I	I	I	1
	4i /	Bu C	Bu E		t.	57.21	34.35	I	Q	Э	36.33/D.D: 37.19/F.E: 37.35/D.F: 39.05/F.F
	4k t.	Bu	Bu A	5	Me	57.46	36.05	I	×	l l	37.94/ B ; 40.08/C
	a) MM2-K	raftfe	ld nac	hAll	inger ²³⁾ .	Für nicht-term	inale C – C-	Bindunger	n mit frei	er Rotatio	on $(E_{cot} \leq 7 \text{ kcal} \cdot \text{mol}^{-1})$ ist ein ROT-Inkrement von 0.36 kcal
Ċ	• mol ⁻¹ zu	1 addie	sren ²³ .): zwe	simal bei	3b und 3d, einn	nal bei 3 c. –	$\nabla = \frac{ds}{ds}H$ (q.	- (g) ⁰ ¹ H∧	ΔH_{Γ}^{N}	ΔH_{f}^{N} wurde aus Gruppeninkrementen nach v. R. Schleyer ²⁵⁾
hen	erhalten. D.F. und F	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ezeich	gunu	, der Koi	ıformationen (k	<pre>< = kleinere</pre>	er, G = gro	öllerer Re	st) an de	n Isopropylresten in A,B und C sowie an den Ethylgruppen in
1. E				a t		† Bu	-	Bu		ŧB	u tBu tBu
Ber.			Me	<u>}-(</u>	Ŧ	,∡ Me∕ ,	e H H	¥ }_¦			H H Me Me Me
116			\sim	\prec		Z		$\overline{\langle}$		Z	A
5 (198			٦,)_:	ž	× , ,	$\langle \mathbf{y} \rangle$	× 		$\sum_{i=1}^{n}$	× × · · ·
33)				Me		I		ае			-
				۷		8		с С		۵	ш

			Tab. 6.	Ausgewä	ählte Struktu	rdaten für	die Vor:	zugskonformativ	on von 3	und 4 nach El	FF-Berechnun	ıg a)	
					Binc	lungslänge	[md] ne		B	indungswinkel	[grad]		() H
	R	R ²	R³	R ⁴	<i>i</i> Bu –	c	R ³ -C	C /Bu-C·	– <i>t</i> Bu	$(Bu - C - R^3)$	C~C _r	$^{\alpha}-C_{\beta}^{\beta}$	[kcal · mol ⁻¹]
3а	/Bu	/Bu	Н	Н	155.3		I	124.	2	105.1	107 - 113	ļ	6.6
3e	/Bu	/Bu	Me	Η	157.2 ^b	6	155.0	121.	3	(10.7 ^{b)}	109 - 114	ŀ	13.9
3f	/Bu	/Bu	Ē	Η	157.6 ^b	6	155.7	121.	0	(11.6 ^{b)}	109 - 114	115.1	17.3
3g	/Bu	/Bu	ιPr	Η	158.4/	157.8	157.1	120.	5 1	11/117	110 - 116	118.4/115	23.1
3 h	/Bu	/Bu	/Bu	Η	160.2		I	116.	7	I	113.9 ^{b)}	I	37.1
4h	/Bu	/Bu	Me	Me	159.6 ^t	~	155.7	118.	7	108.7	114 ^{b)}	I	21.6
4 i	<i>t</i> Bu	/Bu	Ē	ы	161.9 ^t		156.9	115.	7	(10.3	114 ^{b)}	122.1	34.4
4 k	/Bu	<i>t</i> Bu	ιPr	Me	162.2/	160.9	159.4	117.	1	08.9/113.8	115 ^{b)}	119.7/117.9	36.1
					<i>t</i> Bu-C	<i>i</i> Pr-C	R ³ -C	<i>t</i> Bu C <i>i</i> Pr	<i>t</i> Bu – C	– R ³ <i>t</i> Bu	$C-C_{\alpha}-C_{\beta}$ <i>i</i> Pr	R ³	
3с	/Bu	<i>i</i> Pr	Me	Н	156.2	155.6	154.2	115.3	114.() 111.4 ^{b)}	113.1 ^{b)}	ţ	7.8
3d	/Bu	<i>i</i> Pr	Ē	Η	157.0	155.8	154.8	113.7	113.8	3 111.4 ^{b)}	114.3 ^{b)}		10.7
4e	/Bu	<i>i</i> Pr	Me	Me	158.6	157.3	155.4	113.2	111.(() 112.8 ^b	115.5 ^{b)}	I	14.4
4f	/Bu	<i>i</i> Pr	щ	Me	158.9	157.3	156.7	116.9	108.	7 113.3 ^{b)}	117.5	118.8	18.7
4 8	/Bu	<i>i</i> Pr	<i>I</i> Pr	Me	159.5	159.0	158.5	112.3	114.{	3 113.7 ^{b)}	116.9 ^{b)}	116.6/	26.6
												120.2	
					/Bu-C	Et – C	$\mathbb{R}^4 - \mathbb{C}$	$t\mathbf{B}\mathbf{u} - \mathbf{C} - \mathbf{E}\mathbf{t}$	<i>t</i> Bu−C	– R ⁴ C–	c _« -c _β _{Et}		
3b	/Bu	Б	Ē	H	156.4	154.9 ^{b)}		113.3 ^{b)}	1	111.3 ^{b)}	115.3		7.8
4 b	<i>r</i> Bu	ы	Me	Me	158.3	155.7	154.9	111.5	111.	2 112.7b)	117.8		10.0
4c	/Bu	Ē	Ē	Me	158.8	155.8 ^{b)}	154.8	109.8 ^{b)}	110.	0 112.6 ^{b)}	118.8 ^{b)}		13.3
4d	/Bu	Ĕ	ы	ы	158.9	156.4 ^{b)}	ł	109.4 - 113.6	1	113.2 ^{b)}	118.7 -	119.7	17.1
a) MM2-, Fußnote ¹	Krafifelc	l nach z	4 <i>llinger</i>	23) – b)	Mittel der nu	ur leicht u	nterschie	dlichen Werte f	ür die sic	h entsprechene	len Strukturei	inheiten. – 6) Siehe Tab. 5,

charakteristische Strukturmerkmale aufgezeigt und die strukturelle Deformation in jeder der beiden Reihen in Regeln beschrieben werden^{2,26)}.

Ein analoges Strukturschema soll hier für die fünf- und sechsfach substituierten Ethane 3 und 4 abgeleitet werden, die in den Tabellen und im folgenden als drei- und vierfach substituierte Methane angesehen werden. Als wesentliches Ordnungsprinzip wird sich dabei der *Größenunterschied* von \mathbb{R}^1 bis \mathbb{R}^4 erweisen.

Insbesondere die Verzerrung des Methan-Zentrums von der Tetraedersymmetrie des Methans oder Neopentans wird dadurch bestimmt^{19c)}. Drei große Substituenten kombiniert mit einem kleinen (z. B. **3h**, $\mathbb{R}^1 - \mathbb{R}^3 = t\mathbb{B}u$, $\mathbb{R}^4 = \mathbb{H}$) deformieren das vierbindige C-Atom ($\Theta = 109^\circ$) zu einer flachen Pyramide, also in Richtung auf ein planares dreibindiges C-Atom: $\Theta(t\mathbb{B}u - \mathbb{C} - t\mathbb{B}u) = 116.7^\circ$ in **3h** (s. auch Lit.^{3,27)}). Stehen dagegen zwei große Substituenten zwei beträchtlich kleineren gegenüber (z. B. **3a**, $\mathbb{R}^1, \mathbb{R}^2 = t\mathbb{B}u$, \mathbb{R}^3 , $\mathbb{R}^4 = \mathbb{H}$), so verzerrt sich das C-Atom durch Aufweitung des Winkels zwischen den großen Resten, $\Theta(t\mathbb{B}u - \mathbb{C} - t\mathbb{B}u) = 124^\circ$ in **3a**, in Richtung auf die lineare Form eines zweibindigen C-Atoms. Die anderen Methane **3** und **4** stellen Übergänge zwischen diesen beiden Verzerrungstypen der (Tab. 6). Beispielsweise nimmt in der Folge der Di*tert*-butylmethane **3** ($\mathbb{R}^1 = \mathbb{R}^2 = t\mathbb{B}u$, $\mathbb{R}^4 = \mathbb{H}$) mit zunehmender Größe der Reste \mathbb{R}^3 $\mathbb{H}(3a)$, $\mathbb{M}(3e)$, $\mathbb{Et}(3f)$, $i\mathbb{Pr}(3g)$, $t\mathbb{Bu}(3h)$ der $t\mathbb{B}u - \mathbb{C} - t\mathbb{B}u$ -Winkel ab. Die Spannung nimmt jedoch in dieser Reihe stark zu.

Bei den vierfach substituierten Methanen 4 lassen sich analoge Sequenzen aufzeigen, wie z. B. für 4h, i, k ($\mathbb{R}^1 = \mathbb{R}^2 = t\mathbb{B}u$, $\mathbb{R}^4 = Me$). Hier treten wegen der kleineren Größenunterschiede von \mathbb{R}^1 bis \mathbb{R}^4 deutlich kleinere Abweichungen von der Tetraedersymmetrie auf als bei ähnlich gespannten Trialkyl-substituierten Methanen 3.

Ebenfalls zum Spannungsabbau trägt die Winkelverzerrung in den Resten R¹ bis R⁴ bei, und zwar insbesondere in primären und sekundären Resten (Tab. 6). Die starke Aufweitung des $C - CH_2 - CH_3$ -Winkels in Ethylgruppen, wie sie bereits bei den "Ethanen" gefunden wurde^{2,24,26)}, folgt dem Verzerrungsmuster der "Methane" mit zwei großen und zwei kleinen Substituenten (wie oben für **3a** erläutert).

Als wesentlich starrer erweisen sich die *tert*-Butylgruppen²⁸⁾. Sie verformen sich nur wenig durch Aufweiten der C-C-CH₃-Winkel und Stauchen der CH₃-C-CH₃-Winkel^{19d)}. Diese leichte Verformung kann gleichmäßig oder ungleichmäßig erfolgen, d.h. die C-C_{α}-C_{β}-Winkel in den *tert*-Butylgruppen sind gleich oder unterscheiden sich deutlich wie in **3a**-**g**, je nach der Form des Molekülrumpfes, der den sterischen Druck hervorruft^{19d)}.

Strukturspezifische Unterschiede erweisen sich allerdings gerade bei der Verformung der *tert*-Butylgruppen als zweitrangig²⁷⁾, weil tertiäre Reste, wie schon früher erkannt^{2, 26)}, dem sterischen Druck eher durch Bindungsdehnung ausweichen. So ergab sich für symmetrisch substituierte Ethane beim Vergleich der Länge der Ethanbindung mit der Spannungsenthalpie des Ethans, daß eine $C_q - C_q$ -Bindung stärker gedehnt wird als eine $C_t - C_t$ -Bindung (Abb. 1)²⁾. Die analoge Korrelation der Länge der $C_q - tBu$ -Bindungen von 4 gegen $H_{sp}(4)$ sowie der Länge der $C_t - tBu$ -Bindungen von 3 gegen $H_{sp}(3)$ belegen die Gültigkeit des entwickelten Konzeptes. Für die Methane 4 findet man eine den $C_q - C_q$ -Ethanen sehr ähnliche Korrelation, und die $C_t - C_q$ -Bindung von 3 nimmt eine mittlere Stellung zwischen den $C_q - C_{q-}$ und $C_t - C_t$ -Reihen ein. Das einzige Methan mit einer $CH_2 - C_q$ -Bindung (**3a**, \boxtimes) zeigt auch wegen seiner geringen Spannungsenthalpie nur eine geringfügig gedehnte Bindung.

Abb. 1. Zusammenhang zwischen der Bindungslänge (tBu - C) und Spannungsenthalpie (H_{sp}) für die Methane **3** \blacktriangle und **4** \square im Vergleich mit den $C_q - C_q^{-4}$ \bullet und $C_t - C_t^{-3}$ \bigcirc Ethanen. **3a** \boxtimes

Bezeichnenderweise besitzt das gespannteste Methan 4 (4k, $H_{sp} = 36.1 \text{ kcal} \cdot \text{mol}^{-1}$) mit $t\text{Bu} - \text{C}_{q} = 162.2 \text{ pm}$ eine deutlich längere Bindung, als das ähnlich gespannte Methan 3 (3h, $H_{sp} = 37.1 \text{ kcal} \cdot \text{mol}^{-1}$) mit $t\text{Bu} - \text{C}_{t} = 160.2 \text{ pm}$.

Die Spannungsenthalpie der Methane 3 und 4 prägt auch deren thermische Stabilität, über die wir in einer folgenden Arbeit berichten werden.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Förderung dieser Arbeit, den Herren Dr. D. Hunkler (Freiburg) und Prof. H. Fritz (Ciba-Geigy, Basel) für die Aufnahme der NMR-Spektren und den Herren Dr. J. Wörth (Freiburg), Dr. E. Schaller (Gödecke AG, Freiburg) und Dr. H. Seidl (BASF AG, Ludwigshafen) für die massenspektroskopischen Arbeiten. Der Bayer-AG danken wir für die großzügige Spende von Glaskapillaren zur GC.

Experimenteller Teil

Für die spektroskopischen Messungen wurden folgende Geräte benützt: IR-Spektrometer 421, Perkin-Elmer. – NMR-Spektrometer A 60 D und EM 390, Varian (¹H-NMR); WM 250, Bruker (¹H- und ¹³C-NMR) und WP 80, Bruker (¹³C-NMR). – Massenspektrometer SM 1 B, Varian und 4000, Finnigan (CI-MS und GC-MS). – Analytische Gaschromatographie: Perkin-Elmer F 20 B

und F 22 B (FID) mit gepackten Stahlsäulen, Sigma 3B mit Glaskapillaren, alle mit Integratoren Autolab oder Minigrator (Spectra-Physics). – Präparative GC: GC-5A, Shimadzu mit gepackten Stahlsäulen, SE 30.

Synthesen

Die ¹H- und ¹³C-NMR-Spektren der Kohlenwasserstoffe **3** und **4** sowie deren Massenspektren finden sich in Tab. 2-4 und Lit.¹⁹.

2,2,4,4-Tetramethylpentan (3a): 2,4,4-Trimethyl-2-pentanol wurde aus 3,3-Dimethylbutansäure-methylester und Methylmagnesiumiodid²⁹) mit 34% Ausb. dargestellt, Sdp. 140 – 142°C (Lit. ³⁰) 110°C/35 Torr). Das Carbinol wurde nach *Brown* ³¹) in CH₂Cl₂ mit einer stöchiometrischen Menge HCl-Gas bei – 10°C zu 2-Chlor-2,4,4-trimethylpentan umgesetzt, Sdp. 60°C/14 Torr (Lit. ³²) 59 – 60°C/26 Torr). 6.0 g (43 mmol) des Chlorids in 18 ml trockenem *n*-Pentan wurden anschließend in Anlehnung an *Kennedy* ³³) und *Della* et al. ³⁴) unter N₂ bei – 60°C zu 5 ml Al(CH₃)₃³⁵) in 15 ml Pentan getropft. Nach 48 h Kochen unter Rückfluß wurde überschüssiges Al(CH₃)₃ bei – 60°C mit Pentan/Methanol zerstört; danach wurde mit 2 N H₂SO₄ extrahiert, bis alle Al-Salze gelöst waren. Die organische Phase wurde neutral gewaschen, getrocknet, destilliert und schließlich in einer Spaltrohrkolonne fraktioniert. Ausb. 5.1 g (82%) mit Sdp. 120–122°C (Lit.³⁶) 122.6°C). Die Verbindung war in der GC einheitlich.

C₉H₂₀ (128.3) Ber. C 84.28 H 15.72 Gef. C 84.28 H 15.89

3-Ethyl-2,2-dimethylpentan (3b): 3-Ethyl-2,2-dimethyl-3-pentanol wurde durch Grignard-Reaktion²⁹⁾ aus Ethylmagnesiumbromid und Pivalinsäure-methylester mit 55% Ausb. darge-stellt. Sdp. 61 °C/12 Torr (Lit.³⁷⁾ 114 °C/150 Torr). 105.1 g (0.72 mol) des Carbinols wurden unter Eis-Kochsalzkühlung mit 127 ml (1.07 mol) SOCl₂ in 400 ml absol. Pyridin analog Lit.⁹⁾ de-hydratisiert. Nach GC war das entstandene 3-Ethyl-4,4-dimethyl-2-penten durch 7% eines noch nicht identifizierten Isomeren verunreinigt, das bei der Drehbanddestillation über KOH im Rück-stand verblieb. Ausb. 55.6 g (60%) mit Sdp. 133 – 134 °C (Lit.^{5a)} 134.3 °C). Reinheit nach GC \geq 97%. – IR (Film): 3040, 2960, 2870, 1475, 1455, 1390, 1375, 1360, 1310, 1275, 1247, 1210, 1200, 1150, 1085, 1065, 1020, 870, 935, 890, 790, 625 cm⁻¹. – ¹H-NMR (CCl₄): $\delta = 0.99$ (t; CH₃CH₂), 1.02 (s; tBu), 1.57 (d, J = 7 Hz; = CHCH₃), 2.05 (q; CH₃CH₂), 5.17 (q; = CHCH₃). – ¹³C-NMR (CCl₄/CDCl₃): $\delta = 13.74$ (q, CH₃CH₂); 14.79 (q, CH₃CH =); 28.80 (t, geringfügig weiter aufgespalten, CH₃CH₂); 29.67 (q, (CH₃)₃C); 36.85 (s, C(CH₃)₃); 115.67 (d, CH =); 150.25 (s, C =).

37.6 g des Olefins wurden mit 10% Pd auf Kohle 20 h bei 80°C unter 300 at H₂ in Ethanol hydriert, bis die Wasserstoffaufnahme nach IR-Kontrolle vollständig war. Die Isolierung von **3b** erfolgte durch Drehbandfraktionierung. Ausb. 25.5 g (59%) mit Sdp. 133–134°C (Lit. ^{5b)} 133.8°C). C_9H_{20} (128.3) Ber. C 84.28 H 15.72 Gef. C 84.11 H 15.52

3b durch katalytische Reduktion von 3-Ethyl-2,2-dimethyl-3-pentanol: 110 mg (0.90 mmol) des Alkohols wurden an einem Ni-Al-Kontakt¹⁰⁾ hydrogenolytisch in 5 h bei 150°C reduziert. Es wurden 79.2 mg Produkt isoliert, das nach GC 79% **3b** neben zwei weiteren nicht identifizierten Produkten mit 9 bzw. 10% Ausb. enthielt.

2,2,3,4-Tetramethylpentan (3c): 41.7 g (0.29 mmol) 2,2,4,4-Tetramethyl-3-pentanol^{29,38)} wurden in 600 ml absol. Hexamethylphosphorsäuretriamid (HMPT) (Vorsicht, cancerogen!) 3 h auf 220 °C erhitzt¹¹⁾ und nach Abkühlen zur Phasentrennung mit wenig Wasser versetzt. 2,3,4,4-Tetramethyl-1-penten wurde mehrfach mit Pentan extrahiert, der Extrakt neutral gewaschen, getrocknet und in einer Drehbandkolonne über festem KOH fraktioniert. Ausb. 27.0 g (74%) mit Sdp. 133 – 134 °C (Lit. ^{5a)} 134 °C). Reinheit nach GC \ge 96%. – IR (Film): 3070, 2955, 2910,

2870, 1635, 1455, 1390, 1360, 1230, 1185, 1080, 890, 785 cm⁻¹. - ¹H-NMR (CCl₄/CDCl₃): $\delta = 0.87$ (s; *t*Bu), 0.98 (d; CH₃CH), 1.71 (dd; CH₃C = C), 1.96 (q; CH₃CH), 4.62 und 4.72 (m; = CH₂). - ¹³C-NMR (CCl₄/CDCl₃): $\delta = 15.33$ (q, 3-CH₃), 22.94 (q, geringfügig weiter aufgespatten, 2-CH₃), 28.54 (q, C-5), 33.48 (s, C-4), 51.17 (d, C-3), 112.27 (t, C-1), 149.33 (s, C-2).

18.0 g (143 mmol) des Alkens wurden wie bei der Synthese von **3b** hydriert. Nach entsprechender Aufarbeitung und Drehbandfraktionierung Ausb. 8.6 g (47%), Sdp. 130–131 °C (Lit.^{5a}) 130 °C), Reinheit nach GC $\ge 97\%$.

C₉H₂₀ (128.3) Ber. C 84.28 H 15.72 Gef. C 84.40 H 16.13

3-Ethyl-2,2,4-trimethylpentan (3d): 3-Ethyl-2,2,4-trimethyl-3-pentanol³⁹) wurde nach Lit.²⁹) aus *tert*-Butyl-isopropyl-keton und Ethylmagnesiumbromid mit 8% Ausb. dargestellt und mit SOCl₂ in Pyridin⁹) wie bei **3b** beschrieben dehydratisiert. Nach GC waren neben 79% 3-Isopropyl-4,4-dimethyl-2-penten zwei neutrale Produkte, vermutlich Isomere mit 9 bzw. 11% Ausb. entstanden, die sich durch Fraktionierung nicht vollständig abtrennen ließen. Ausb. 6.0 g (41%) mit Sdp. 57 – 58 °C (Lit.³⁹) 158 °C/153 Torr); Reinheit nach GC \ge 90%. – ¹H-NMR (CCl₄): $\delta = 1.00$ (s, (CH₃)₃C), 1.15 (d, (CH₃)₂CH), 1.68 (d, = CHCH₃), 2.35 (d sept, J = 7.2 und 1 Hz, (CH₃)₂CH), 5.23 (dq, = CH).

6.0 g des Alkens wurden wie bei **3b** beschrieben hydriert, wobei **3d** durch drei Nebenprodukte mit 4.5, 2.5 und 11% verunreinigt erhalten wurde. Ausb. 4.1 g (68%) mit Sdp. 153-154 °C (Lit.^{5b)} 155.3 °C), Reinheit 90% nach Fraktionierung. Durch präparative GC wurden 1.4 g 97% reines **3d** isoliert. – IR (Film): 2955 (C-C-H), 1470 (H-C-H), 1385 (C-C-H) cm⁻¹.

 $C_{10}H_{22}$ (142.3) Ber. C 84.41 H 15.59 Gef. C 84.46 H 15.86

2,2,3,4,4-Pentamethylpentan (3e): 40 g (0.25 mmol) 2,2,3,4,4-Pentamethyl-3-pentanol⁴⁰) wurden mit 44.0 g (0.31 mol) SOCl₂ in 140 ml Pyridin⁹) wie bei 3**b** beschrieben dehydratisiert. Ausb. 21.0 g (60%) mit Sdp. $50 - 52 \degree C/17$ Torr (Lit.⁴¹⁾ 146 - 150 \degree C) eines Gemisches aus 92% 2-*tert*-Butyl-3,3-dimethyl-1-buten und 8% 2,3,3,4,4-Pentamethyl-1-penten. 7.0 g des Gemisches wurden bei 100 at und 80 ° C mit 5% Pd auf Kohle in Ethanol bis zur quantitativen H₂-Aufnahme hydriert (GC-Kontrolle). Nach fraktionierter Destillation Ausb. 4.4 g (60%) mit Sdp. 158 °C (Lit.^{5a)} 159.3 °C). Nachreinigung durch präp. GC ergab 1.3 g **3e** mit 99% Reinheit nach GC.

C10H22 (142.3) Ber. C 84.41 H 15.59 Gef. C 84.37 H 15.55

3-Ethyl-2,2,4,4-tetramethylpentan (3f) und 3-Ethyl-2,2,3,4-tetramethylpentan (4f): 3-Ethyl-2,2,4,4-tetramethyl-3-pentanol⁴²) wurde aus 2,2-Dimethyl-3-pentanon und *tert*-Butyllithium bei - 78°C mit 50% Ausb. dargestellt, Sdp. 84-88°C/15 Torr (Lit.⁴²⁾ 121°C/55 Torr). 60.7 g (353 mmol) des Alkohols wurden zur Dehydratisierung 3 h in HMPT auf $220 \,^{\circ}C^{11}$ erhitzt. Wie von Dubois et al. beschrieben¹¹), entstanden dabei neben 40% flüchtigen Komponenten 6% 1-tert-Butyl-1-ethyl-2,2-dimethylcyclopropan, 29% 3-tert-Butyl-4,4-dimethyl-2-penten und 25% 3-Ethyl-2,3,4,4-tetramethyl-1-penten, die sich weder in einer 1-m-Drehbandkolonne noch in einer Spaltrohrkolonne vollständig trennen ließen. Führte man die Dehydratisierung des 3-Ethyl-2,2,4,4-tetramethyl-3-pentanols mit SOCl₂ in Pyridin⁹⁾ bei -50° C durch, so isolierte man die gleichen Isomeren im Verhältnis 14% 2-Alken, 2% Cyclopropan und 84% 1-Alken mit 36% Gesamtausbeute. Gemische der Isomeren unterschiedlicher Zusammensetzung wurden mit PtO2-Katalysator bei 300 at und 100 °C in Eisessig jeweils 20 h bis zur vollständigen H₂-Aufnahme hydriert. Mit steigendem Anteil des Cyclopropans entstanden zunehmend die Isolierung von 3f und 4f störende Nebenprodukte. Bei der Fraktionierung des Rohproduktes in einer 1-m-Drehbandkolonne wurde 3f in den ersten Fraktionen angereichert. Es wurde durch präparative GC auf >95% Reinheit gebracht.

C11H24 (156.3) Ber. C 84.52 H 15.48 Gef. C 84.44 H 16.08

In den letzten Fraktionen der Drehbandfraktionierung fiel **4f** mit 94% Reinheit (GC) an, Sdp. 58-59 °C/12 Torr. Es wurde durch präparative GC auf >99% Reinheit angereichert.

C11H24 (156.3) Ber. C 84.52 H 15.84 Gef. C 84.46 H 15.86

3-Isopropyl-2,2,4,4-tetramethylpentan (3g): 3-Isopropyl-2,2,4,4-tetramethyl-3-pentanol mit Sdp. 45 – 46 °C/0.5 Torr (Lit.⁴³⁾ 62 – 64 °C/0.75 Torr) und Schmp. 30 – 31 °C wurde nach Lit.⁴³⁾ dargestellt. Zur Darstellung des *p*-Nitrobenzoats wurde ein Ansatz aus 55.9 g (0.43 mmol) *tert*-Butyl-isopropyl-keton in absol. Ether und 235 ml 15proz. *tert*-Butyllithium in Pentan bei 78 °C nicht hydrolysiert, sondern das gebildete Li-Alkoholat unter N₂ und Eiskühlung zu einer Lösung von 89 g (0.48 mol) *p*-Nitrobenzoylchlorid in 400 ml absol. Ether getropft. Nach 12 h wurde auf Eiswasser gegossen und die wäßrige Phase mit Ether nachextrahiert. Die vereinigten organischen Phasen wurden neutral gewaschen, bei 0 °C mit MgSO₄ getrocknet und i. Vak. zwischen 0 und 25 °C eingeengt. Der zähflüssige Rückstand kristallisierte bei – 30 °C langsam durch. Die Kristalle wurden abgesaugt und erst aus Ether, dann aus Petrolether umkristallisiert. Ausb. 15.2 g (11%) mit Schmp. 103 °C (Lit.⁴⁴⁾ 103 – 104 °C) und Zersetzung ab 125 °C. – IR (KBr): 1705 cm⁻¹. – ¹H-NMR (CCl₄): $\delta = 1.20$ (d; 6H), 1.38 (s; 18H), 3.97 (sept; 1H), 8.30 und 8.33 (mc; 4H).

C₁₉H₂₉NO₄ (335.4) Ber. C 68.03 H 8.71 N 4.18 Gef. C 67.97 H 8.97 N 3.98

Zu 6.3 g (0.9 mmol) klein geschnittenem Lithium in einer mit N₂ gespülten, mit Trockeneiskühler versehenen Apparatur wurden 250 ml wasserfreies Ethylamin (Fluka) kondensiert. Nach 3 h Rühren wurde eine gesättigte Lösung von 6.0 g des *p*-Nitrobenzoats in absol. THF zugetropft, anschließend 2 h gerührt, mit 100 ml Pentan und dann vorsichtig mit Eiswasser zur Hydrolyse versetzt. Die abgetrennten organischen Phasen wurden mit Wasser nachgewaschen, mit MgSO₄ getrocknet und in einer 1-m-Drehbandkolonne eingeengt. 3.3 g (55 Gew.-%) Rückstand wurden zweimal in einer Spaltrohrkolonne fraktioniert, wobei 0.59 g (19%) **3g** mit 95% Reinheit isoliert wurden. Sdp. 91–92°C/15 Torr. Durch präp. GC wurde vollständige Reinheit erzielt.

C12H26 (170.3) Ber. C 84.61 H 15.39 Gef. C 84.64 H 15.37

3-tert-Butyl-2,2,4,4-tetramethylpentan (**3h**): 15 g (43 mmol) p-Nitrobenzoat von Tri-tert-butylmethanol⁴⁴⁾ mit Schmp. 105 °C (Lit.⁴⁴⁾ 105 – 106 °C) wurden mit 15 g Lithium in 750 ml Ethylamin¹⁴⁾ wie bei **3g** beschrieben reduziert¹⁴⁾. Aus dem Rückstand (11.3 g) wurde **3h** durch präp. GC isoliert. Ausb. 0.80 g (6%) mit Schmp. 84 – 84.5 °C (Lit.¹⁴⁾ 83 – 84 °C). Reinheit nach GC > 99%. $C_{13}H_{28}$ (184.4) Ber. C 84.69 H 15.31 Gef. C 84.77 H 15.46

2,2,3,3-Tetramethylpentan (**4b**): 43.9 g (0.41 mol) 2-Chlor-2-methylbutan³¹) wurden nach Lit.⁴⁵) mit 0.41 mol *tert*-Butyllithium in 270 ml absol. *n*-Hexan 48 h unter Rückfluß gekocht. Nach vorsichtigem Zufügen von Methanol unter Kühlen wurde hydrolysiert, getrocknet und das Solvens in einer 1-m-Drehbandkolonne abdestilliert. Der Rückstand von 13.3 g enthielt nach GC 23% **4b**. Durch mehrfache Fraktionierung in einer Spaltrohrkolonne konnte ein großer Teil der Nebenprodukte entfernt werden und ein zu 90% reines Präparat **4b** isoliert werden, das mit mehreren Komponenten jeweils im Prozentmaßstab verunreinigt war. Ausb. 0.82 g (1.6%) mit Sdp. 140 – 142 °C (Lit. ^{5a}) 140.26 °C).

C₉H₂₀ (128.3) Ber. C 84.28 H 15.72 Gef. C 84.20 H 15.70

3-Ethyl-2,2,3-trimethylpentan (4c): 60.3 g (0.50 mol) 3-Chlor-3-methylpentan⁴⁶⁾ wurde wie bei 4b beschrieben mit *tert*-Butyllithium umgesetzt. 28.4 g Rohprodukt enthielten laut GC 13% 4c neben fünf weiteren Substanzen und Oligomeren. Durch wiederholte Fraktionierung in einer Drehbandkolonne und schließlich in einer Spaltrohrkolonne wurden 0.80 g (1.2%) 4c mit Sdp. 60-61 °C/15 Torr mit 90% Reinheit (GC) isoliert. Die Probe enthielt fünf Verunreinigungen im Prozentmaßstab.

C10H22 (142.3) Ber. C 84.41 H 15.59 Gef. C 84.40 H 16.13

3,3-Diethyl-2,2-dimethylpentan (4d): 54.6 g (0.40 mol) 3-Chlor-3-ethylpentan⁴⁶⁾ wurden wie bei 4b beschrieben mit *tert*-Butyllithium umgesetzt. Nach Fraktionierung Ausb. 0.79 g 4d (1.3%) mit Sdp. 175 – 176 °C; Reinheit laut GC 90% mit Verunreinigung durch acht Verbindungen im Prozentmaßstab.

2,2,3,3,4-Pentamethylpentan (4e): 23.7 g (150 mmol) 2,2,3,4,4-Pentamethyl-3-pentanol⁴⁰ (s. o.) wurden nach *Dubois*¹² in Portionen von je 20 mmol bei 25 °C mit 1.12 ml 96proz. Schwefelsäure versetzt. Nach 10 – 12 s Rühren wurde mit 6 ml Pentan verdünnt, die Schwefelsäure abgetrennt und die organische Phase mit 1 ml verd. Natronlauge versetzt. Von den vereinigten Ansätzen wurden die Pentanphasen abgetrennt, neutral gewaschen, mit MgSO₄ getrocknet und destilliert. Ausb. 12.5 g (60%) 2,3,3,4,4-Pentamethyl-1-penten mit Sdp. 157 °C (Lit.⁴¹⁾ 158.75 °C); Reinheit nach GC 97%. – ¹³C-NMR (CCl₄/CDCl₃): $\delta = 23.58$ (q, 2-CH₃), 23.96 (q, 3-CH₃), 26.66 (q, C-5), 35.94 (s, C-4), 43.36 (s, C-3), 113.25 (t, C-1), 151.14 (s, C-1).

Das Olefin wurde mit 10% Pd auf Kohle bei 100 °C und 300 at in Ethanol bis zum vollständigen Umsatz (GC-Kontrolle) hydriert. Nach üblicher Aufarbeitung und Destillation in einer Spaltrohrkolonne isolierte man 8.9 g (66%) 4e mit Sdp. 58 – 60 °C/25 Torr (Lit. ^{5b)} 159.3 °C). Reinheit 97% nach GC. Durch präparative GC isolierte man 5.3 g vollständig reines Produkt.

3-Isopropyl-2,2,3,4-tetramethylpentan (4g): 37.2 g (0.20 mmol) 3-Isopropyl-2,2,4,4-tetramethyl-3-pentanol wurden wie oben beschrieben mit 35.2 g (0.30 mol) SOCl₂ in 110 ml absol. Pyridin bei -50 °C dehydratisiert⁹). Als Hauptprodukt entstand dabei 3-Isopropyl-2,3,4,4-tetramethyl-1-penten neben 20% flüchtigen Bestandteilen und 8% eines weiteren Nebenproduktes unbekannter Struktur. Durch Drehbandfraktionierung isolierte man 23.7 g (73%) des Alkens mit Sdp. 79 – 80 °C/12 Torr mit 90% Reinheit nach GC. Die NMR-Spektren stimmen mit den Angaben in Lit.⁴⁷⁾ überein. – MS (80 eV): $m/e = 126(3), 125(6), 113(7), 112(70, M - 56), 111(17, M - C(CH_3)_3), 98(8), 97(100), 82(12), 71(5), 70(6), 69(70), 67(7), 57(93), 56(6), 55(47), 53(6%).$

Das gleiche Olefin ließ sich auch durch Thermolyse von 3-Isopropyl-2,2,4,4-tetramethyl-3pentanol in HMPT^{11,19} isolieren.

7.5 g Alken wurden in Eisessig mit PtO_2 bei 300 atm. und 100°C 20 h bis zu vollständigem Umsatz (GC) hydriert. **4g** wurde durch Drehbanddestillation (Ausb. 2.2 g mit Sdp. 65 – 67°C/12 Torr; 95% rein lt. GC) und präparative GC (50% Verlust) rein isoliert.

C12H26 (170.3) Ber. C 84.61 H 15.39 Gef. C 84.55 H 15.41

2,2,3,3,4,4-Hexamethylpentan (**4h**): 134.5 g (1.0 mol) 2-Chlor-2,3,3-trimethylbutan⁴⁶) wurden mit 1.1 mol *tert*-Butyllithium wie bei **4b** beschrieben umgesetzt. Das Rohprodukt enthielt laut GC 25% **4h**, ca. 25% Nebenprodukte ähnlicher GC-Retentionszeit und 50% Oligomere. Durch Drehbandfraktionierung und präparative GC isolierte man 2.1 g **4h** mit 99% Reinheit.

C11H24 (156.3) Ber. C 84.52 H 15.48 Gef. C 84.55 H 15.49

3,3-Diethyl-2,2,4,4-tetramethylpentan (4i): 41.9 g (258 mmol) 3-Chlor-3-ethyl-2,2-dimethylpentan⁴⁶⁾ wurden wie bei 4b beschrieben mit *tert*-Butyllithium umgesetzt. Das vom Solvens befreite Rohprodukt enthielt nur 5% 4i neben 5% Verunreinigungen ähnlicher Retentionszeit und 80% niedrigsiedende Bestandteile. Der flüchtige Anteil wurde in einer 2-m-Drehbandkolonne abdestilliert und der Rückstand von 18.2 g in einer Spaltrohrkolonne fraktioniert. Ausb. 380 mg (0.8%) 4i mit Sdp. 73 – 78 °C/12 Torr und 90% Reinheit nach GC.

3-Isopropyl-2,2,3,4,4-pentamethylpentan (4k): 15 g (75 mmol) Tri-tert-butylmethanol wurden in 120 ml Pyridin mit 30 ml (0.44 mmol) SOCl₂ bei – 50 °C dehydratisiert⁹⁾, wie für 3b beschrieben. Nach 90 min bei – 50 °C und 1 h bei 25 °C bestand das Reaktionsgemisch aus 48% Ausgangsmaterial und 50% 3-tert-Butyl-2,3,4,4-tetramethyl-1-penten, das durch präparative GC isoliert wurde. Ausb. 2.8 g (20.5%) mit Schmp. 154 °C (Lit.^{13,44)} 152–154 °C); Reinheit 98% laut GC. Das ¹H-NMR-Spektrum stimmt mit dem in Lit.¹³⁾ angegebenen überein.

2.0 g des Alkens wurden mit 10% Pd auf Kohle bei 100 at und 50°C 20 h in Ethanol hydriert und nach Abdestillieren des Solvens mit PtO_2 bei 100 at und 100°C in Eisessig nachhydriert, bis 90% 4k entstanden waren. Nach der üblichen wäßrigen Aufarbeitung und nach Pentanextraktion sowie Abdestillieren des Solvens fiel festes 4k an und wurde durch Sublimation gereinigt. Ausb. 36 mg (41%) mit Schmp. 131 – 133°C (Lit. ¹³⁾ 127 – 134°C), Reinheit 98% laut GC.

C13H28 (184.4) Ber. C 84.69 H 15.31 Gef. C 84.67 H 15.39

Kraftfeldrechnungen: Die Berechnungen mit dem MM2-Kraftfeld^{23a)} wurden entweder mit dem Rechenprogramm MM2^{23b)} oder mit dem Programm STRAIN 65¹⁸⁾ auf der Rechenanlage UNIVAC 1100/8 durchgeführt. Die Bildungsenthalpien für die Vorzugskonformationen und die wichtigsten Rotationsminima finden sich in Tab. 5 und ausgewählte Strukturdaten für die Vorzugskonformationen in Tab. 6.

- ²⁾ C. Rüchardt und H.-D. Beckhaus, Angew. Chem. 92, 417 (1980); Angew. Chem., Int. Ed. Engl. 19, 429 (1980).
- ³⁾ G. Hellmann, S. Hellmann, H.-D. Beckhaus und C. Rüchardt, Chem. Ber. 115, 3364 (1982).
- ⁴⁾ R. Winiker, H.-D. Beckhaus und C. Rüchardt, Chem. Ber. 113, 3456 (1980).
- ^{5) 5a)} F. L. Howard, T. W. Mears, A. Fookson, P. Pomerantz und D. B. Brooks, J. Res. Natl. Bur. Stand. 38, 365 (1947). – ^{5b)} P. Pomerantz, T. W. Mears und F. L. Howard, J. Res. Natl. Bur. Stand. 42, 617 (1949).
- ⁶⁾ T. T. Tidwell, Tetrahedron 34, 1855 (1978).
- ⁷⁾ C. Whitmore und H. A. Southgate, J. Am. Chem. Soc. 60, 2572 (1938).
- ⁸⁾ J. P. Kennedy, J. Org. Chem. 35, 532 (1970); E. W. Deller und T. K. Bradshaw, ebenda 40, 1638 (1975).
- ⁹⁾ ^{9a)} J. S. Lomas, D. S. Sagatys und J. E. Dubois, Tetrahedron Lett. **1972**, 559. ^{9b)} M. S. Newman, A. Arkell und T. Fukunaga, J. Am. Chem. Soc. **82**, 2498 (1960).
- ¹⁰⁾ W. F. Maier, P. Grubmüller, I. Thies, P. M. Stein, M. A. McKervery und P. v. R. Schleyer, Angew. Chem. **91**, 1004 (1979); Angew. Chem., Int. Ed. Engl. **18**, 939 (1979).
- 11) J. S. Lomas, D. S. Sagatys und J. E. Dubois, Tetrahedron Lett. 1972, 165.
- ¹²⁾ J. E. Dubois, Tetrahedron Lett. 1971, 1349.
- 13) P. D. Bartlett und T. T. Tidwell, J. Am. Chem. Soc. 90, 4421 (1968).
- ¹⁴⁾ H. Lee, Thesis, University of Michigan 1971, S. 84.
- ¹⁵⁾ Privatmitteilung *T. T. Tidwell*.
- ¹⁶) Siehe z. B. D. H. Williams und J. Fleming, Spektroskopische Methoden zur Strukturaufklärung, 3. Aufl., J. Thieme Verlag Stuttgart, 1975: ^{16a}) S. 52. – ^{16b}) S. 36.
- ¹⁷⁾ H. B. Burgi und L. S. Bartell, J. Am. Chem. Soc. 94, 5236 (1972).
- ¹⁸⁾ Siehe z. B. H.-D. Beckhaus, G. Hellmann und C. Rüchardt, Chem. Ber. 111, 72 (1978), für Tetra-tert-butylethan.
- ¹⁹ Für eine ausführliche Diskussion siehe Dissertation S. Hellmann, Univ. Freiburg 1982: ^{19a} S. 28 ff. ^{19b} S. 32. ^{19c} S. 76. ^{19d} S. 83.
- ²⁰⁾ L. P. Lindemann und J. Q. Adams, Anal. Chem. 43, 1245 (1971).
- ²¹⁾ J. A. Pople, W. G. Schneider und H. J. Bernstein, High Resolution Nuclear Magnetic Resonance, 1. Aufl., S. 365, McGraw Hill, New York, 1959.
- 22) W. Lüttke, Univ. Göttingen, Privatmitteilung.
- ²³⁾ ^{23a} N. L. Allinger, J. Am. Chem. Soc. **99**, 8127 (1977). ^{23b} N. L. Allinger und Y. H. Yuh, Quantum Chem. Prog. Exch. Programm Nr. 395 (1980).
- ²⁴⁾ H.-D. Beckhaus, G. Kratt, K. Lay, J. Geiselmann, C. Rüchardt, B. Kitschke und H. J. Lindner, Chem. Ber. 113, 3441 (1980).
- 25) P. v. R. Schleyer, J. E. Williams und K. Blanchard, J. Am. Chem. Soc. 92, 2377 (1970).
- ²⁶⁾ H.-D. Beckhaus, Fresenius Z. Anal. Chem. 304, 281 (1980).
- ²⁷⁾ H.-D. Beckhaus, G. Hellmann und C. Rüchardt, Chem. Ber. 111, 72 (1978).
- ²⁸⁾ H.-D. Beckhaus, Angew. Chem. 90, 633 (1978); Angew. Chem., Int. Ed, Engl. 17, 593 (1978).
- ²⁹⁾ Organikum, VEB Deutscher Verlag der Wissenschaften, 9. Aufl., S. 550, Berlin 1970.
- ³⁰⁾ J. G. Traynham und M. A. Battiste, J. Org. Chem. 22, 1551 (1957).
- ³¹⁾ H. C. Brown und M.-H. Rei, J. Org. Chem. 31, 1090 (1966).

¹⁾ XVIII. Mitteil.: K.-H. Eichin, H.-D. Beckhaus, S. Hellmann, H. Fritz, E.-M. Peters, K. Peters, H. G. v. Schnering und C. Rüchardt, Chem. Ber. 116, 1787 (1983).

- ³²⁾ H. C. Brown und R. S. Fletcher, J. Am. Chem. Soc. 71, 1845 (1949).
- 33) J. P. Kennedy, J. Org. Chem. 35, 532 (1970).
- 34) E. W. Della und T. K. Bradshaw, J. Org. Chem. 40, 1638 (1975).
- ³⁵⁾ H. Lehinkuhl und K. Ziegler in Methoden der organischen Chemie (Houben-Weyl-Müller), Bd. 13/4, S. 166, Georg Thieme Verlag, Stuttgart 1954.
- 36) C. Whitmore und H. A. Southgate, J. Am. Chem. Soc. 60, 2571 (1938).
- ³⁷⁾ F. C. Whitmore, R. E. Meyer, G. W. Pedlow jr. und A. H. Popkin, J. Am. Chem. Soc. 60, 2788 (1938).
- ³⁸⁾ M. S. Kharasch, Y. C. Liu und W. Nudenberg, J. Org. Chem. 19, 1150 (1954).
- 39) I. N. Nasarow, Ber. Dtsch. Chem. Ges. 69, 22 (1936).
- 40) F. C. Whitmore und K. C. Laughein, J. Am. Chem. Soc. 55, 3432 (1933).
- ⁴¹⁾ V. J. Shiner und C. F. Meier, J. Org. Chem. **31**, 137 (1966).
- ⁴²⁾ A. D. Petrov, E. B. Sokolava und C. L. Kao, Zh. Obshch. Khim. **30**, 1107 (1960) [Chem. Abstr. **55**, 374i (1961)].
- 43) P. D. Bartlett und E. B. Lefferts, J. Am. Chem. Soc. 77, 2804 (1955).
- 44) P. D. Bartlett und M. Stiles, J. Am. Chem. Soc. 77, 2806 (1955).
- ⁴⁵⁾ K. Ziegler und H. Colonius, Liebigs Ann. Chem. **479**, 135 (1930); H. D. Zook und R. N. Goldey, J. Am. Chem. Soc. **75**, 3975 (1953); J. H. Sommer und W. D. Korte, J. Org. Chem. **35**, 22 (1970).
- 46) W.Duismann, R. Hertel, J. Meister und C. Rüchardt, Liebigs Ann. Chem. 1976, 1820.
- ⁴⁷⁾ D. Lenoir, H. Daumer und R. M. Franck, Chem. Ber. 113, 2636 (1980).

[320/82]